Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Thorac Cancer ; 13(10): 1463-1470, 2022 05.
Article in English | MEDLINE | ID: covidwho-1846156

ABSTRACT

BACKGROUND: The aim of this prospective, pilot, single-arm phase II trial was to evaluate the safety and efficacy of anlotinib combined with etoposide and platinum-based regimens in the first-line treatment of extensive-stage small cell lung cancer (ES-SCLC). METHODS: This phase II study was conducted at Fudan University Shanghai Cancer Center between December 2018 and December 2020. All patients received standard chemotherapy (etoposide plus cisplatin/carboplatin) consisting of four courses and anlotinib at 12 mg once per day for 2 weeks followed by a one-week rest. Anlotinib administration was continued until disease progression, intolerable adverse events (AEs) or patient withdrawal from the study. The primary outcome measure was progression-free survival (PFS). The secondary outcome measures were overall survival (OS), objective control rate (ORR), disease control rate (DCR) and AEs. RESULTS: Thirty-seven patients were included in this study, and 30 patients were eligible for efficacy analysis. ORR and DCR were 90.0% and 96.7%, respectively. The estimated PFS and OS were 6.0 months (95% CI: 1.1-11.9 months) and 14.0 months (95% CI: 8.6-19.4 months), respectively. No unexpected adverse effects were reported. Hypertension (20/37, 54.1%), anemia (16/37, 43.2%), alopecia (15/37, 40.5%), elevated transaminases (9/37, 24.3%) and alkaline phosphatase (9/37, 24.3%) were the most commonly reported AEs. Thirteen patients (35.1%) reported grade 3-5 AEs. No treatment-related deaths occurred during this study. CONCLUSION: The addition of anlotinib to standard etoposide/platinum chemotherapy achieved encouraging PFS and OS in previously untreated ES-SCLC patients, with an acceptable tolerability profile and no new safety signals observed.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin , China , Etoposide , Humans , Indoles , Platinum/pharmacology , Platinum/therapeutic use , Prospective Studies , Quinolines
2.
Int J Mol Sci ; 21(15)2020 Jul 23.
Article in English | MEDLINE | ID: covidwho-1389381

ABSTRACT

As SARS-CoV-2 is spreading rapidly around the globe, adopting proper actions for confronting and protecting against this virus is an essential and unmet task. Reactive oxygen species (ROS) promoting molecules such as peroxides are detrimental to many viruses, including coronaviruses. In this paper, metal decorated single-wall carbon nanotubes (SWCNTs) were evaluated for hydrogen peroxide (H2O2) adsorption for potential use for designing viral inactivation surfaces. We employed first-principles methods based on the density functional theory (DFT) to investigate the capture of an individual H2O2 molecule on pristine and metal (Pt, Pd, Ni, Cu, Rh, or Ru) decorated SWCNTs. Although the single H2O2 molecule is weakly physisorbed on pristine SWCNT, a significant improvement on its adsorption energy was found by utilizing metal functionalized SWCNT as the adsorbent. It was revealed that Rh-SWCNT and Ru-SWCNT systems demonstrate outstanding performance for H2O2 adsorption. Furthermore, we discovered through calculations that Pt- and Cu-decorated SWNCT-H2O2 systems show high potential for filters for virus removal and inactivation with a very long shelf-life (2.2 × 1012 and 1.9 × 108 years, respectively). The strong adsorption of metal decorated SWCNTs and the long shelf-life of these nanomaterials suggest they are exceptional candidates for designing personal protection equipment against viruses.


Subject(s)
Betacoronavirus/drug effects , Disinfectants/pharmacology , Hydrogen Peroxide/analysis , Nanotubes, Carbon/chemistry , Adsorption , COVID-19 , Coronavirus Infections/prevention & control , Density Functional Theory , Disinfectants/chemistry , Drug Stability , Humans , Iron/chemistry , Iron/pharmacology , Pandemics/prevention & control , Personal Protective Equipment , Platinum/chemistry , Platinum/pharmacology , Pneumonia, Viral/prevention & control , Rhodium/chemistry , Rhodium/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , SARS-CoV-2 , Virus Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL